Finite-Time Noninertial Adaptive Control

Ljubomir T. Grujić* University of Belgrade, Belgrade, Yugoslavia

The topic of this paper is the synthesis of finite-time adaptive control of a nonstationary nonlinear space vehicle without utilizing information about variations of its parameters and nonlinearities. The algorithms of the adaptive control are established for an arbitrarily chosen aggregation function such that their implementation assures the required trajectory bounds of the vehicle and its error-state system and guarantees the same settling time of the vehicle as that of the reference model that can be optimal in an appropriate sense. Illustrative examples are worked out.

	Nomenclature	e	= the error state vector, $e \in \mathbb{R}^n$,
\boldsymbol{A}	= the absolute value matrix of a matrix		$e = x_M - x_v$
•	$A, A = (\alpha_{ij}), A = (\alpha_{ij})$	i	=a q vector function defining the
$A_{(\cdot)}$	= an $n \times n$ functional matrix, $A_{(\cdot)}: \mathbb{R} \times$		governing (command) input, $i:\Re \rightarrow$
(-)	$\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}^{n \times n} : \mathbb{R}^{n \times n}$		\mathfrak{R}^{q} .
A_{ci}	= a known $n \times n$ matrix determining a	9	= the set of all allowable governing in-
	bound of allowable variations of A_c ,		puts, $\mathcal{G} = \{i: i(t) \leq \gamma, \forall t \in \mathcal{I}_0\},$
	$A_{ci}: \mathbb{R} \to \mathbb{R}^{n \times n}, i = 1,2$		$\gamma \in \mathfrak{R}_+$
\mathfrak{A}_c	= a set of all allowable elementwise	M(A)	= the structural matrix of $A = (\alpha_{ij})$,
c	changeable matrices A_c of the vehicle,		$M = (\mu_{ij})$
	$\alpha_c = \{A_c : A_{c1}(t) \le A_c(t) \le A_{c2}(t),$		
	$\forall t \in \mathfrak{I}_0$		$O \text{ iff } \alpha = 0$
$B_{(\cdot)}$	= an $n \times m$ functional matrix, $B_{(\cdot)}$: \Re		$= \int_{-\infty}^{\infty} V \Pi \Gamma \alpha_{ij} = 0$
2(.)	$\times \mathfrak{R}^{n} \times \mathfrak{R}^{n} \times \mathfrak{R}^{q} \to \mathfrak{R}^{n \times m}$	μ_{ij}	$= \begin{cases} 0 & \text{iff } \alpha_{ij} = 0 \\ 1 & \text{iff } \alpha_{ij} \neq 0 \end{cases}$
$B_{(\cdot)i}$	= a known $n \times m$ matrix defining a		C = set sty / s
- (.)/	bound of allowable variation of $B_{(\cdot)}$,	S(A)	-the signum matrix of AS(A)
	$B_{(\cdot)i}: \mathbb{R} \to \mathbb{R}^{n \times m}, i=1,2$	S(A)	= the signum matrix of $A,S(A)$
B (·)	= a set of all allowable matrices $B_{(\cdot)}$		$= (\operatorname{sgn} \alpha_{ij})$
(.)	$\mathfrak{B}_{(+)} = \{B_{(+)}:B_{(+)}\mid (t)\leq B_{(+)}\mid (t)\leq B_{(+)}\}$	$\operatorname{sgn} \alpha$	$= \alpha ^{-1} \alpha \text{ iff } \alpha \neq 0 \text{ and sgn } 0 = 0$ $(\alpha, \alpha \leq 1)$
	$B_{(\cdot)2}(t)$	sat α	= {
$oldsymbol{b}_v$	= a known m vector associated with the		$\langle \operatorname{sgn} \alpha, \alpha \geq 1$
	vehicle, $\boldsymbol{b}_{v} \geq 0$ elementwise	S	= a set valued function, $S: \mathbb{R} \to \mathbb{C}^n$, which
$b_{(\cdot)}$	= an <i>m</i> vector function, $b_{(+)}: \mathbb{R} \times \mathbb{R}^n \rightarrow$		determines a time varying set $S(t)$; all
()	\Re^m , $b_{(\cdot)} = x_{(\cdot)}$ is allowable and then		time-varying sets are accepted con-
	$m = n, b'_{(\cdot)} = (b_{(\cdot)1} b_{(\cdot)2} b_{(\cdot)m})^T$		tinuous in $t \in \mathfrak{I}_0^{-1,2}$
$oldsymbol{B}_v$	= a known $n \times m$ matrix associated with	$\partial S(t)$	= the boundary of $S(t) \in \mathbb{C}^n$
v	the vehicle, $B_v \ge 0$ elementwise	S(t)	= the closure of $S(t) \in \mathbb{C}^n$
\mathfrak{B}_v	= a set of all allowable nonlinearities of	$S_1 \times S_2$	= the Cartesian product of S_1 and S_2 , S_1
v	the vehicle, $\mathfrak{B}_v = \{b_v : b_v(t, x_v) \le b_v$		$\times S_2 = \{ (x,y) : x \in S_1, y \in S_2 \}$
	$+\boldsymbol{B}_{v} x_{v} , \forall t \in \mathfrak{I}_{0}, \forall x_{v} \in S_{AV}(t)$	$S_{A(\cdot)}(t)$	= the set of all allowable states of (\cdot) at
$C_{(\cdot)}$	= an $n \times q$ functional matrix, $C_{(\cdot)}: \mathbb{R} \times$		$t \in \mathfrak{I}_0$
	$\Re^n \times \Re^n \times \Re^q - \Re^{n \times q}$	$S_{F(\cdot)}(t)$	= the set of all allowable states of (\cdot) at
C_{ci}	= a known $n \times q$ matrix determining a		$t \in (\mathfrak{I}_0 \setminus \mathfrak{I}_s), S_{F(\cdot)}(t) \subseteq S_{A(\cdot)}(t)$
	bound of allowable variations of C_c ,	$S_{I(+)}(t_0)$	= the set of all allowable initial states of
	$C_{ci}: \mathbb{R} \to \mathbb{R}^{n \times q}, i = 1,2$		(\cdot)
\mathbf{e}_{c}	= a set of allowable elementwise	$S_{L(\cdot)}(t)$	= a subset of $S_{F(\cdot)}(t)$ with the property
	changeable matrices C_c of the vehicle		that $\vartheta(t,x) < \vartheta(t,y)$, $\forall t \in \mathfrak{I}_{\theta}$, $\forall x \in \tilde{S}_{L(\cdot)}$
	$\mathcal{C}_c = \{ C_c : C_{c1}(t) \le C_c(t) \le C_{c2}(t), $		$\forall y \in S_{A(\cdot)}(t) S_{L(\cdot)}(t)$
	$\forall t \in \mathfrak{I}_0$ }	$S_{(+)v}(t)$	= is associated with the control system of
C^n	= the collection of all nonempty con-		the vehicle, $S_{(\cdot)v}(t) = \{x_v : x_v =$
	nected bounded subsets of \mathbb{R}^n		$x_M + e, x_M \in S_{(\cdot)M}(t), e \in S_{(\cdot)e}(t)$
D_v	= an $n \times r$ functional matrix associated	T(y)	= the signum matrix of $y = (y_1 y_2y_n)^T$,
	with the vehicle, $D_v: \mathfrak{R} \times \mathfrak{R}^n \times \mathfrak{R}^n$		$T(y) = \operatorname{diag}\{\operatorname{sgn} y_1 \operatorname{sgn} y_2 \operatorname{sgn} y_n\}$
	$\times \Re^q - \Re^{n \times r}$; all elements of D_v are	t	$=$ time, $t \in \mathbb{R}$
	either known or adjustable and,	t_0	= an initial moment, $t_0 \in \mathbb{R}$
	hence, $D_v = D_a$	\mathfrak{Z}_{θ}	= a given (or to be determined) finite-time
		_	interval, $\mathfrak{I}_0 = [t_0, t_0 + \tau]$
D	075	\mathfrak{I}_s	= a known (or to be determined) finite-
Received Nov. 12, 1975; revision received Oct. 18, 1976.		. .	time interval, $\mathfrak{I}_s = [t_0, t_0 + \tau_s]$
Index categories: Aircraft Handling, Stability, and Control; Navigation, Control, and Guidance Theory; Spacecraft Attitude		$\mathfrak{I}_o \mathfrak{I}_s$	$=]t_0+\tau_s,t_0+\tau[$
Dynamics and Control.		и	= the control vector function, $u: \mathbb{R} \times \mathbb{R}^n$
	Mechanical Engineering.		$\times \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}^r$, $u = (u_1 u_2 u_r)^T$

ϑ	= an aggregation function used for a system aggregation, $\vartheta: \Re \times \Re^n \to \Re$; it is accepted that $\vartheta(t,y) \in C^{(l,l)}(\Re \times \Re^n)$
$(\mathrm{d}/\mathrm{d}t)\vartheta(t,x_{(\cdot)})$	= the Eulerian derivative of ϑ along motions of (\cdot)
$\nabla \vartheta(t,x_{(\cdot)})$	$= [(\partial \vartheta/\partial x_{(\cdot)})] (\partial \vartheta/\partial x_{(\cdot)}) \dots (\partial \vartheta/\partial x_{(\cdot)})]^T$
$\vartheta_{s(\tilde{\cdot})}(t)$	$=\sup[\vartheta(t,y):y\in\bar{S}_{(\cdot)}(t)]$
$\vartheta_{i,(\cdot)}^{(\cdot)}(t)$	$=\inf[\vartheta(t,y):y\in S_{(+)}(t)]$
$\vartheta_{i(+)}^{\partial_{i(+)}}(t)$	$=\inf[\vartheta(t,y):y\in\partial S_{(+)}(t)]$
x _(·)	= the state vector of a system determined by $(\cdot)_{x} x_{(\cdot)} \in \mathbb{R}^{n}$, $x_{(\cdot)} = (x_{(\cdot)} x_{(\cdot)} x_{(\cdot)$
	$(x_{(\cdot)n})^T$
$x_{(\cdot)}(t; t_0, x_{(\cdot)o}; i)$	= a motion of (·), which is in $x_{(\cdot)\theta}$ at t_{θ} , provided that i is a governing input of
11 11 11 11 11 11 11 11 11 11 11 11 11	(·) on \Im_0 ; $x_{(\cdot)0} = x_{(\cdot)}$ (t_0) = the Euclidean norm of $y \in \Re^n$, $ y = (y^T y)^{\frac{1}{2}}$
β	= a nonlinear function, $\beta: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$
	$= \sigma = 1 \text{iff} (d/dt) \vartheta(t, x_M) < \psi(t),$
σ∈{0,1}	$\forall (t, x_M, i) \in \mathfrak{I}_0 \times \mathfrak{R}^n \times \mathfrak{I}$, holds pro-
	vided $B_M b_M \equiv 0$; $\sigma = 0$ iff $b_M(t, x_M) =$
	x_M and $(d/dt) \vartheta(t, x_M) < \psi(t)$, $\forall (t, x_M, i, B_M) \in \mathfrak{I}_0 \times \mathfrak{R}^n \times \mathfrak{I} \times \mathfrak{B}_M$
au	$= \tau \in]0, + \infty[$
$ au_s$	$=\tau_s \in]0, \tau[$ - the settling time of both the
• 3	reference model and the vehicle
ϕ	= the empty set
ψ	= a function $\psi: \mathbb{R} \to \mathbb{R}$ being integrable over \mathfrak{I}_0
Superscripts	
m,n,p,q,r	= positive integers
Subscripts	
a	=index denoting matrices with elements
•	being either constant or adjustable
	parameters of the adaptable controller
	of the vehicle
c	= index denoting matrices with either
	known or unpredictably changeable
	parameters of the vehicle
e	=index associated with the error-state
	system
i,j	= positive integers
M	= index denoting the reference model of
	the control system of the vehicle; all matrices indexed by M are known
	= index denoting the control system of
\boldsymbol{v}	the vehicle, all matrices indexed by v
	are decomposable into those indexed by
	c and a, e.g., $A_{ij}(t,) = A_{ci}(t)$
	$+A_a(t,)$

Introduction

AIRPLANES, rockets, and space vehicles are required generally to realize their desired motions or, at least, motions that are appropriately close to the desired ones on a finite-time interval.³ Minimum acceptable errors are prespecified. Hence, a set of all allowable state errors until the settling time and a set of all allowable state errors after the settling time has elapsed are defined.

Space vehicles are nonstationary and nonlinear. In addition, some of their parameters and/or nonlinearities vary unpredictably within certain bounds. Adequate models of space vehicles retain these properties as essential ones.

The severe requirements imposed on motions of space vehicles with described features can be hardly satisfied by classical feedback concepts, which was a reason for the development of adaptive control.⁴ Meanwhile, fairly all stability-oriented results on adaptive-control systems as reviewed by Landau, ^{5,6} Hang and Parks, ⁷ and Lindorf and Carroll⁸ were concerned with synthesis of adaptive control on

an infinite time interval. Synthesis problems of finite-time stabilizable control were first considered in Ref. 9 and more recently in Ref. 10.

In this paper, we impose and solve the problem of finitetime adaptive-control synthesis in general. The solution guarantees state errors to be in the prespecified bounds and moreover the same settling time of a real, nonlinear vehicle as that of the model that can be optimal in a given sense. The results are based on the concept of practical stability with the settling time, ^{2,11} and they enable the reduction of the vehiclecontrol optimization to that of the reference model. If the settling time of the vehicle is to be minimized it will be achieved by minimizing the model settling time.

Statement of Problems

The system to be considered is governed by

$$\frac{\mathrm{d}x_{v}}{\mathrm{d}t} = A_{v}(t,\dots)x_{v} + B_{v}(t,\dots)b_{v}(t,x_{v}) + C_{v}(t,\dots)i + D_{v}(t,\dots)u$$
(1)

which describes the control system of the vehicle (the vehicle itself together with its adaptable controller). The parameters and/or nonlinearities of the vehicle may be unpredictably changeable within known bounds. We do not need information about the real form of variations of the parameters and nonlinearities.

With the system (1), we associate its reference model

$$\frac{\mathrm{d}x_{M}}{\mathrm{d}t} = A_{M}(t)x_{M} + B_{M}(t,x_{M})b_{M}(t,x_{M}) + C_{M}(t)i \tag{2}$$

which can be optimal in an appropriate sense and, hence, nonlinear. For example, the reference model (2) can be optimal in the sense of minimizing the settling time τ_s . We shall establish algorithms, whose implementation assures the same settling time τ_s of the vehicle. This is accomplished by using the error state system

$$\frac{de}{dt} = A_M(t)e + B_M(t, e + x_v)b_M(t, e + x_v) + [A_M(t) - A_v(t, ...)]x_v - B_v(t, ...)b_v(t, x_v) + [C_M(t) - C_v(t, ...)]i - D_v(t, ...)u$$
(3)

Notice that the nonlinearities B_M and b_M of the reference model (2) depend on both e and x_n in Eq. (3).

We suppose that the set $S_{Ie}(t_0)$ of all allowable initial error-states is prespecified. Then, for any governing allowable input i, $i \in \mathcal{G}$, and any allowable e_0 , $e_0 \in S_I(t_0)$, the error state $e(t) = e(t; t_0, e_0; i)$ should be in the set $S_{Ae}(t)$ of all allowable instantaneous errors on $[t_0, t_0 + \mathcal{G}_s]$ and in $S_{Fe}(t)$ on $[t_0 + \tau_s]$, $t_0 + \tau$. In essence, we require the practical stability with the settling time τ_s of Eq. (3).

Definition

System (3) is practically stable with the settling time τ_s with respect to $\{t_0, \mathcal{F}_0, S_{le}(t_0), S_{Ae}(t), S_{Fe}(t), \mathcal{F}_0\}$ iff $e_0 \in S_I(t_0)$ and $i \in \mathcal{F}$ imply

$$e(t;t_0,e_0,i) \in \begin{cases} S_{Ae}(t) & \forall t \in \Im_s \\ S_{Fe}(t) & \forall t \in \Im_0 \setminus \Im_s \end{cases}$$

Moreover, we require that system (3) possess such a stability property too. Naturally, the reference model (2) is assumed to be practically stable with the settling time τ_s , which is more precisely expressed 2 by assumption 1.

Assumption 1

There exist both an aggregation function ϑ and comparison function ψ such that

$$\int_{t_0}^{t} \psi(\tau) \, \mathrm{d}\tau \leq \begin{cases} \vartheta_{iAM}^{\vartheta}(t) - \vartheta_{s\bar{l}M}(t_0) & \forall t \in \mathfrak{I}_s \\ \vartheta_{iLM}^{\vartheta}(t) - \vartheta_{s\bar{l}M}(t_0) & \forall t \in (\mathfrak{I}_0 \setminus \mathfrak{I}_s) \end{cases}$$

and along motions of Eq. (2)

$$\frac{\mathrm{d}}{\mathrm{d}t}\vartheta(t,x_M) < \psi(t) \qquad \forall (t,i,x_M) \in \mathfrak{I}_0 \times \mathfrak{I} \times \mathfrak{R}^n$$

Now we can formally, but more precisely, state the problems to be solved.

Statement of the Problems

What are algorithms of adaptive control u and control of adaptable parameters so that their implementation guarantees that both a) the system (1) be practically stable with the settling time τ_s with respect to $\{t_0, \, 3_0, \, S_{Iv}(t_0), \, S_{Av}(t), \, S_{Fv}(t), \, 3\}$, and b) the error state system (3) be practically stable with the setting time τ_s with respect tp $\{t_0, \, 3_0, \, S_{Ie}(t_0), \, S_{Ae}(t), \, S_{Fe}(t), \, 3\}$ for all allowable variations of parameters and nonlinearities of the vehicle: $\forall (A_c, B_c, C_c, b_v) \in \mathfrak{A}_c \times \mathfrak{B}_c \times \mathfrak{C}_c \times \mathfrak{B}_v$, provided that Assumption 1 holds.

We shall solve these problems in the general setting of nonstationary nonlinear systems and time-varying sets by employing the concept of noninertial adaptive control, ^{10,12,13} and Assumption 2.

Assumption 2

The aggregation function ϑ and the corresponding sets obey both

$$\vartheta_{iAM}^{\partial}(t) - \vartheta_{siM}(t_0) \le \vartheta_{iAe}^{\partial}(t) - \vartheta_{sie}(t_0), \ \forall t \in \mathfrak{I}_s$$

and

$$\vartheta_{iLM}^{\vartheta}(t) - \vartheta_{s\bar{l}M}(t_{\theta}) \leq \vartheta_{iLe}^{\vartheta}(t) - \vartheta_{s\bar{l}e}(t_{\theta}), \ \forall t \in (\mathfrak{I}_{\theta} \setminus \mathfrak{I}_{s})$$

Solutions of the Problems

Noninertial control, which was most often used as a relay control, appeared suitable for solutions of problems of optimal control, ¹⁴⁻¹⁶ discontinuous control, ^{16,17} variable structure control systems, ¹⁸ and adaptive control systems. ^{9,12,19-22} It is also advantageous for the simplicity of its realization by relay devices or other typical nonlinear elements.

In general, control $u.3 \times \Re^n \times \Re^n \times \Im - \Re^r$ is called *noninertial*. It is realized by static, or so called instantaneous, elements, rather than by dynamic ones. If noninertial control is utilized to adjust adaptable matrices and/or as an adaptive control signal, then it is called *noninertial adaptive control*. ^{10,13}

General noninertial adaptive control of the vehicle (2) is defined by

$$T[(A_{M}(t) - A_{c} - A_{a})x_{v} + \sigma B_{M}(t, e + x_{v})b_{M}(t, e + x_{v})$$

$$+ (I - \sigma)B_{M}(t, e + x_{v})x_{v} - (B_{c} + B_{a})b_{v}$$

$$+ (C_{M}(t) - C_{c} - C_{a})i - D_{v}u] = -T[\nabla V(t, e)]$$

$$\forall (A_{c}, B_{c}, C_{c}, b_{v}, t, x_{v}, e, i) \in \mathfrak{A}_{c} \times \mathfrak{B}_{c}$$

$$\times \mathfrak{C}_{c} \times \mathfrak{A}_{v} \times \mathfrak{I}_{\theta} \times \mathfrak{A}^{n} \times \mathfrak{A}^{n} \times \mathfrak{I}$$

$$(4)$$

This algorithm requires such a choice of adaptable parameters (A_a, B_a, C_a, D_a) and adaptive control u that for

each $t \in \mathfrak{I}_{\theta}, x_v \in \mathfrak{R}^n$, $e \in \mathfrak{R}^n$ and $i e \mathfrak{I}$ and for any allowable value of variable parameters (A_c, B_c, C_c) and nonlinearity (b_v) , the sign of the left-hand side of Eq. (4) is equal to the sign of its right-hand side.

Implementation of this algorithm of noninertial adaptive control resolves the problems a) and b) under Assumption 1 and Assumption 2. This is precisely explained by Theorem 1.

Theorem 1

If Assumptions 1 and 2 hold, then implementation of noninertial adaptive control satisfying Eq. (4) implies practical stability with the settling time τ_s of both i) the system (1) with respect to $\{t_0, \Im_0, S_{Iv}(t_0), S_{Av}(t), S_{Fv}(t), \Im\}$ and ii) the error state system (3) with respect to $\{t_0, \Im_0, S_{Iv}(t_0), S_{Av}(t), S_{Fv}(t), \Im\}$ for all allowable variations of parameters and nonlinearities of the vehicle: $\forall (A_c, B_c, C_c, b_v) \in \mathbb{G}_c \times \mathbb{G}_c \times \mathbb{G}_c \times \mathbb{G}_v$.

Proof. Notice that Assumption 1, (ii) of Theorem 1, and definition of the sets $S_{(\cdot)v}(t)$ imply (i) of the theorem. Hence, we should prove only (ii). At first, we find that along motions of Eq. (3)

$$\frac{\mathrm{d}}{\mathrm{d}t}\vartheta(t,e) \leq \frac{\partial\vartheta}{\partial t} + (\nabla\vartheta)^T [A_M(t)e + (1-\sigma)B_M(t,e+x_v)e]$$

due to Eq. (4). Now, Assumption 1, Eq. (4), and $(i=0)\in \mathcal{G}$ yield

$$\frac{\mathrm{d}}{\mathrm{d}t}\vartheta(t,e) < \psi(t), \quad \forall (t,e) \in \mathfrak{I}_0 \times \mathfrak{R}^n, \quad \forall i \in \mathfrak{I}$$

Integrability of ψ , Assumption 1, and Assumption 2 leads to

$$\vartheta[t, e(t; t_0, e_0; i)] \leq \begin{cases} \vartheta_{iAe}^{\vartheta}(t) - \vartheta_{sfe}(t_0), & \forall t \in \Im_s \\ \vartheta_{iLe}^{\vartheta}(t) - \vartheta_{sfe}(t_0), & \forall t \in (\Im_0 \setminus \Im_s) \end{cases}$$

$$\forall (e_0, i, A_c, B_c, C_c, b_v) \in S_{le}(t_0) \times \mathcal{G} \times \mathfrak{G}_c \times \mathfrak{G}_c \times \mathfrak{G}_c \times \mathfrak{G}_v$$

which completes the proof of (ii) by referring to Ref. 2.

Example 1

We shall synthesize noninertial adaptive control of the system (1) given in a special form by

$$\frac{\mathrm{d}x_{v}}{\mathrm{d}t} = (1+t)^{3} \begin{pmatrix} \alpha_{c} & \beta_{c} \\ 6 & -16.1 \end{pmatrix} x_{v} + \begin{pmatrix} 1 & 0 \\ \gamma_{c} & \gamma_{a} \end{pmatrix} b_{v}(t,x_{v}) + \begin{pmatrix} \delta_{c} & \sin t \\ 0 & \delta_{c} \end{pmatrix} i + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u$$

Here, $u \in \mathbb{R}$ is a scalar control. It is known only that the parameters α_c , β_c , γ_c , δ_c can arbitrarily vary in the bounds [-1, +1]. The allowable vector nonlinearity can also arbitrarily vary provided $b_v \in \mathbb{G}_v$

$$\mathfrak{B}_{v} = \{b_{v}: b_{v}(t,0) \equiv 0 \quad b_{vi}(t,x_{v})/x_{vi} \in [0,1]$$

$$\forall (t,x_{v}) \in \mathfrak{I}_{0} \times \mathfrak{R}^{2}, i = 1,2\}$$

where $\Im_0 = [0,9]$. The required settling time of the system may not be greater than $\tau_s = 2$.

The reference model is given by

$$\frac{dx_{M}}{dt} = (1+t)^{3} {\binom{-12.1}{6}}^{4} {x_{M}} - 2(1+t)^{4} {\binom{\text{sat}0.1x_{M1}}{\text{sat}0.1x_{M2}}} + {\binom{2}{0}}^{4} {i}$$

The set of allowable initial states of the model is $S_{IM}(0) = \{x_M: \|x_M\| < 2\}$. The set of allowable instantaneous states on [0,2] is $S_{AM}(t) = \{x_M: \|x_M\| < 10/(1+t^2)\}$, of allowable instantaneous states on [2,9[is $S_{FM}(t) = \{x_M: \|x_M\| < 1/(1+t^2)\}$, and the set of all allowable governing inputs $\mathfrak{I} = \{i: \|i\| < 20\}$.

The given system and its error state system should be practically stable with respect to $\{0,]0,9[, S_{Iv}(0), S_{Av}(t), S_{Fv}(t), \mathcal{S}_{Fv}(t), \mathcal{S}_{F$

$$S_{Ie}(0) = \left\{e: \|e\| < 2\right\}, \ S_{Ae}(t) = \left\{e: \|e\| < \frac{10}{1+t}\right\}$$
$$S_{Fe}(t) = \left\{e: \|e\| < \frac{1}{1+t^2}\right\}$$

At first, we shall analyze the reference model. Function ϑ , $\vartheta\left(x_{M}\right)=\|x_{M}\|$, is accepted as a tentative aggregation function of the model. Then, the extremal values of ϑ on the corresponding sets are

$$\vartheta_{sfM}\left(0\right) = 2$$
 $\vartheta_{iAM}^{\vartheta}\left(t\right) = \frac{10}{1+t}$ $\vartheta_{iLM}^{\vartheta}\left(t\right) = \frac{1}{1+t^2}$

so that $S_{LM}(t) = S_{FM}(t)$ can be accepted. Furthermore,

$$\frac{\mathrm{d}}{\mathrm{d}t}\vartheta(x_M) < -2(1+t) \Rightarrow \psi(t)$$

$$= -2(1+t) \Rightarrow \int_0^t \psi(t) \, \mathrm{d}t = -(2t+t^2)$$

holds along motions of

$$\frac{\mathrm{d}x_M}{\mathrm{d}t} = A_M(t)x_M + B_M(t, x_M)b_M(t, x_M)$$

for every $y \in \mathbb{R}^2$, where

$$B_M(t,x_M) = -2(1+t)^4 \operatorname{diag}\{\beta(x_{MI}) \mid \beta(x_{M2})\},\$$

$$b_M(t,x_M) = x_M$$

and $\beta(\xi) = (\text{sat } 0.1\xi) \xi^{-1}$. Hence, the reference model is practically stable with the settling time $\tau_s = 2$ with respect to $\{0]0,9[,S_{IM}(0),S_{AM}(t),S_{FM}(t),\mathfrak{G}\}$.

Referring to the given system we find that allowable variations of changeable parameters are determined by $(A_c, B_c, C_c) \in \mathfrak{A}_c \times \mathfrak{B}_c \times \mathfrak{C}_c$, where

$$\alpha_{c} = \left\{ A_{c} : (l+t)^{3} {\begin{pmatrix} -l & -l \\ 6 & -l6.l \end{pmatrix}} \right.$$

$$\leq A_{c}(t) \leq (l+t)^{3} {\begin{pmatrix} l & l \\ 6 & l6.l \end{pmatrix}}$$

$$\alpha_{c} = \left\{ B_{c} : {\begin{pmatrix} l & 0 \\ -l & 0 \end{pmatrix}} \leq B_{c}(t) \leq {\begin{pmatrix} l & 0 \\ l & 0 \end{pmatrix}} \right\}$$

$$\alpha_{c} = \left\{ C_{c} : {\begin{pmatrix} -l & \sin t \\ 0 & -l \end{pmatrix}} \leq C_{c}(t) \leq {\begin{pmatrix} l & \sin t \\ 0 & -l \end{pmatrix}} \right\}$$

Now, we can formulate the algorithm of noninertial adaptive control by

$$sgn\{(I+t)^{3}[\alpha_{c}+12.I+2(I+t)\beta(x_{vI}+e_{I})]x_{vI} + (\beta_{c}-4)x_{v2} + b_{vI} + (2-\delta_{c})i_{i} + u\} = sgn e_{I}$$

$$\operatorname{sgn}\left\{2(I+t)^{\frac{1}{4}}\beta(x_{v2}+e_2)x_{v2}+\gamma_c b_{v1}+\gamma_a b_{v2}+(\delta_c-I)i_2\right\}$$

$$=\operatorname{sgn} e_2, \forall (t,x_v,e,i) \in \mathfrak{I}_0 \times \mathfrak{R}^2 \times \mathfrak{R}^2 \times \mathfrak{I}$$

provided these equations hold for any α_c , β_c , γ_c , δ_c , b_{vl} , and b_{v2} equal either to -1 or +1. Then, they will hold for any α_c , β_c , γ_c , δ_c , b_{vl} , and b_{v2} in [-1, +1] due to the linearity of the last expressions in these variables. Implementation of this algorithm guarantees the required practical stability of both the given system and its error state system with the same settling time $\tau_s = 2$ as that of the reference model. Moreover, we are able to evaluate trajectory bounds. Trajectories of the vehicle are in the set $S_{Av}(t)$ for $t \in [0,2]$ and in its subset $S_{Fv}(t)$ for $t \in [2,9]$.

Landau and Courtiol²³ established equivalence between parameter and signal synthesis adaptation provided the plant is linear. Their result will be generalized to nonlinear plants in what follows. In order to achieve it we accept Assumption 3.

Assumption 3

Vector function b_v is known. Then, we can establish the Lemma.

Lemma

Under Assumption 3 signal synthesis adaptation can be reduced to parameter adaptation.

Proof. Let D_a and u be adequately partitioned so that $D_a u = D_{a1} u_1 + D_{a2} u_2 + D_{a3} u_3$ and $D_a u = D_{a1} x_v + D_{a2} b_v$ $(t, x_v) + D_{a3} i$. Then, the problem of synthesis of $D_a u \equiv D_v u$, since $D_a \equiv D_v$, is reduced to that of synthesis of $D_{vi} = D_{ai}$, $\forall i = 1, 2, 3$, which proves the lemma.

Under the lemma we may formally write A_a , B_a , and C_a instead of $(A_{al} + D_{al})$, $((B_a + D_{a2})$, and $(C_a + D_{a3})$, respectively, and, if this has been done, then the vehicle is described by

$$\frac{dx_{v}}{dt} = [A_{c} + A_{a}(t,...)]x_{v} + [B_{c} + B_{a}(t,...)]b_{v}(t,x_{v}) + [C_{c} + C_{a}(t,...)]i$$
(5)

Formally, Eq. (5) is obtained from Eq. (1) when u = 0 is set in Eq. (1). Hence, the error-state system corresponding to Eq. (5) is deduced formally from Eq. (3) for u = 0.

If the lemma holds, then noninertial adaptive control can be synthesized by applying the following algorithm

$$S[A_{M}(t) - A_{c} - A_{a}] = -T[\nabla \vartheta(t,e)]M(A_{a})T(x_{v})$$

$$T[\sigma B_{M}(t,e+x_{v})b_{M}(t,e+x_{v}) + (I-\sigma)B_{M}(t,e+x_{v})x_{v}$$

$$-(B_{c} + B_{a})b_{v}(t,x_{v})] = -T[\nabla \vartheta(t,e)]$$

$$S[C_{M}(t) - C_{v} - C_{a})] = -T[\nabla \vartheta(t,e)]M(C_{a})T(i)$$

$$\forall (A_{c},B_{c},C_{c},t,x_{v},e,i) \in \mathcal{C}_{c} \times \mathcal{C}_{c} \times \mathcal{T}_{\theta} \times \mathcal{C}^{n} \times \mathcal$$

This algorithm is simpler than Eq. (4) for implementation but is based on the more stringent structural conditions for adaptable matrices, which is expressed by the use of the structural matrices $M(A_a)$ and $M(C_a)$ of adaptable matrices A_a and C_a , respectively.

Theorem 2

If Assumptions 1-3 hold, then implementation of noninertial adaptive control determined by Eq. (6) implies practical stability with the settling time τ_s of both i) the system (5) with respect to $\{t_0, \Im_0, S_{Iv}(t_0), S_{Av}(t), S_{Fv}(t), \Im\}$, and ii) the error state system (3) (u=0) with respect to $\{t_0, \Im_0, S_{Iv}(t), S_{Iv}(t)$

 $\mathfrak{I}_0, S_{Ie}(t_0), S_{Ae}(t), S_{Fe}(t), \mathfrak{I}_0$, for all allowable variations of parameters: $\forall (A_c, B_c, C_c) \in \mathfrak{A}_c \times \mathfrak{B}_c \times \mathfrak{C}_c$.

Theorem 2 is proved along the same lines as Theorem 1 for a = 1.

Example 2

Let us reconsider the reference model adaptive system of Example 1 by assuming that $b_v(t,x_v)$ is known and that $u \in \mathbb{R}^2$ rather than $u \in \mathbb{R}$. The control u is now a vector.

At first we propose u to be defined by

$$u = (D_{a1} \ D_{a2} \ D_{a3}) \begin{pmatrix} x_v \\ b_v \\ i \end{pmatrix} \quad D_{ai} = \begin{pmatrix} \delta_{i1} & \delta_{i2} \\ \delta_{i3} & \delta_{i4} \end{pmatrix} \forall i = 1, 2, 3$$

Here, all δ_{ij} are adjustable parameters. Since A_a , B_a , and C_a should compensate unknown variations of α_c , β_c , γ_c , and δ_c only we set $\delta_{13} = \delta_{14} = 0$, $\delta_{22} = 0$, $\delta_{32} = \delta_{33} = 0$, so that adaptable matrices are now defined by

$$A_{a} = \begin{pmatrix} \delta_{11} & \delta_{12} \\ 0 & 0 \end{pmatrix} = D_{a1} \qquad B_{a} = \begin{pmatrix} \delta_{21} & 0 \\ \delta_{23} & \delta_{24} + \gamma_{a} \end{pmatrix}$$

$$C_{a} = \begin{pmatrix} \delta_{31} & 0 \\ 0 & \delta_{34} \end{pmatrix}$$

The sets \mathfrak{A}_c , \mathfrak{B}_c , and \mathfrak{C}_c are the same as in Example 1. We are looking for adaptation algorithms of adjustable parameters in order to assure the practical stability property of the vehicle and its error-state system with the settling time $\tau_s = 2$ of the reference model. Certainly, we can apply Eq. (4). Meanwhile, we apply the simpler algorithm (6), which requires

$$sgn[-(I+t)^{3}(\alpha_{c}+I2.I)-\delta_{11}] = -sgn(e_{1}x_{v_{1}})$$

$$sgn[(I+t)^{3}(4-\beta_{c})-\delta_{12}] = -sgn(e_{1}x_{v_{2}})$$

$$sgn[(I+\delta_{21})b_{v_{1}}(t,x_{v})+2(I+t)^{4}$$

$$sat(0.Ix_{v_{1}}+0.Ie_{1})] = sgne_{1}$$

$$sgn[(\gamma_{c}+\delta_{23})b_{v_{1}}(t,x_{v})+(\delta_{24}+\gamma_{a})b_{v_{2}}(t,x_{v})$$

$$+2(I+t)^{4}sat(0.Ix_{v_{2}}+0.Ie_{2})] = sgne_{2}$$

$$sgn(\delta_{c}-2+\delta_{31}) = sgn(e_{1}i_{1})sgn(\delta_{c}-I+\delta_{34})$$

$$= sgn(e_{2}i_{2}) \forall (t,x_{v},e,i) \in \Im_{0} \times \Re^{2} \times \Re^{2} \times \Im$$

to be satisfied for any α_c , β_c , γ_c , δ_c equal either to -1 or to +1, because then Eq. (6) holds due to linearity in these parameters. The value and sign of adaptable parameters are accepted such that the precedent algorithm is satisfied, which guarantees the required practical stability properties with the settling time $\tau_s = 2$.

We can realize greater freedom left for the choice of noninertial adaptive control if Assumption 4 holds.

Assumption 4

 $b_M(t,x_M) = x_M$ and $b_v(t,x_v) = x_v$.

Then, the following equations define a new noninertial adaptive control algorithm:

$$S[A_c + B_c + A_a + B_a - A_M(t) - B_M(t, e + x_v)]$$

$$= T[\nabla \vartheta(t, e)] M(A_a + B_a) T(x_v)$$

$$S[C_c + C_a - C_M(t)] = T[\nabla \vartheta(t, e)] M(C_a) T(i)$$

$$\forall (A_c, B_c, C_c, t, x_v, e, i) \in \mathcal{Q}_c \times \mathcal{Q}_c \times \mathcal{Q}_c \times \mathcal{Q}_o \times \mathcal{Q}^n \times \mathcal{Q}^$$

In this case the structural requirement imposed on adaptable matrices is relaxed because the structural matrix $M(A_a)$ of A_a only is replaced by the structural matrix $M(A_a + B_a)$ of $A_a + B_a$.

Theorem 3

If Assumptions 1-4 hold then implementation of noninertial adaptive control determined by Eq. (7) guarantees practical stability with the settling time τ_s of both i) the system (5) with respect to $\{t_0, \mathfrak{I}_0, S_{Iv}(t_0), S_{Av}(t), S_{Fv}(t), \mathfrak{I}\}$, and ii) the error-state system (3) (u=0) with respect to $\{t_0, \mathfrak{I}_0, S_{Ie}(t_0), S_{Ae}(t), S_{Fe}(t), \mathfrak{I}\}$ for all allowable variations of parameters: $\forall (A_c, B_c, C_c) \in \mathfrak{A}_c \mathfrak{B}_c \times \mathfrak{C}_c$

Theorem 3 is proved by following the proof of Theorem 1 for $\sigma = 0$.

Example 3

Let the adaptive control system of Example 1 be reconsidered now for $b_v(t,x_v) = x_v$ and $u \in \mathbb{R}^2$. We again define u as in Example 2, but now apply Eq. (7). Hence, the adaptable parameters δ_{11} , δ_{12} , δ_{21} , δ_{23} , δ_{24} , δ_{31} , and δ_{34} are chosen so that

$$sgn[(1+t)^{3}(\alpha_{c}+12.1)+1+\delta_{11}+\delta_{21} +2(1+t)^{4}\beta(x_{v1}+e_{1})] = sgn(e_{1}x_{v1})$$

$$sgn[(1+t)^{3}(\beta_{c}-4)+\delta_{12}] = sgn(e_{1}x_{v2})$$

$$sgn(\gamma_{c}+\delta_{23}) = sgn(e_{2}x_{v1})$$

$$sgn[\gamma_{a}+\delta_{24}+2(1+t)^{4}\beta(x_{v2}+e_{2})] = sgn(e_{2}x_{v2})$$

$$sgn(\delta_{c}+\delta_{31}-2) = sgn(e_{1}i_{1}), sgn(\delta_{c}+\delta_{34}-1) = sgn(e_{2}i_{2})$$

$$\forall (t,x_{v},e,i) \in \Im_{0} \times \Re^{2} \times \Re^{2} \times \Im$$

hold for any α_c , β_c , γ_c , δ_c equal either to -1 or to +1. This algorithm guarantees practical stability with the settling time $\tau_s = 2$ of both the vehicle and the error-state system. Bounds of their trajectories for $t \in [0,2]$ are determined by the boundaries of the sets $S_{Av}(t)$ and $S_{Ae}(t)$, and for $t \in]2,9[$ by the boundaries of $S_{Fv}(t)$ and $S_{Fe}(t)$, respectively.

Conclusions

The theory of finite-time noninertial adaptive control of nonstationary nonlinear plants (vehicles) has been developed in the paper. It is advantageous for the following reasons: 1) The reference model may be nonlinear nonstationary optimal control system. 2) Minimization of the settling time of the plant (vehicle) is reduced to minimization of the settling time of the reference model. In general, optimization of the adaptive-control system of the plant (vehicle) is reduced to optimization of its reference model. 3) Implementation of noninertial adaptive control defined by the algorithms established in this paper guarantees the required practical stability property of both the plant and its error-state system with the same settling time as that of the reference model. Moreover, the plant trajectories are assured to be within prespecified bounds. 4) Information about variations of both the plant parameters and nonlinearities is not required for implementation of noninertial adaptive control. 5) The adaptive control algorithms are synthesized for the aggregation function of arbitrary form. They enable usage of the aggregation function of the reference model. 6) Noninertial adaptive control is simply realized by digital computers in particular. 7) Great freedom is left for optimization of the level of the stabilizing noninertial adaptive control, which can be used for increasing the speed of convergence of the motions of the plant-control system to those of the reference model.

It seems possible to broaden the theory developed herein to time-discrete and stochastic adaptive control systems. At this stage of the development of noninertial adaptive control there are imposed certain structural requirements on adaptable matrices, which are common to stability-oriented adaptive-control algorithms as pointed out by Narendra and Kudva. ²⁴

Following Ref. 24 it appears possible to broaden the theory of finite-time noninertial adaptive control to design of finite-time adaptive observers.

References

¹Lee, E. B. and Markus, L., Foundations of Optimal Control Theory, Wiley, New York, 1967.

²Grujic, L. T., "Non-Lyapunov Stability Analysis of Large-scale Systems on Time-Varying Sets," *International Journal of Control*, Vol. 21, March 1975, pp. 401-415.

³San Fillipo, F. A. and Dorato, P., "Short-Time Parameter Optimization with Flight Control Applications," *Automatica*, Vol. 10, July 1974, pp. 425-430.

⁴Colburn, B. K. and Boland, J. S., "Extended Lyapunov Stability Criterion Using a Nonlinear Algebraic Relation with Application to Adaptive Control," *AIAA Journal*, Vol. 14, May 1976, pp. 648-655.

⁵Landau, I. D., "Model-Reference Adaptive Systems – A Survey MRAS – What is Possible and Why?," ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 94, Series G, June 1972, pp. 119-132.

⁶Landau, I. D., "A Survey of Model Reference Adaptive Techniques – Theory and Applications," *Automatica*, Vol. 10, July 1974, pp. 353-379.

⁷Hang, C. C. and Parks, P. C., "Comparative Studies of Model Reference Adaptive Control Systems," *IEEE Transactions on Automatic Control*, Vol. AC-18, Oct. 1973, pp. 419-428.

⁸Lindorf, D. P. and Carroll, "Survey of Adaptive Control using Liapunov Design," *International Journal of Control*, Vol. 18, No. 1973, pp. 897-914

⁹Grujic, L. T., "Adaptive Control of Non-Linear Plants on Finite-Time Intervals," *Proceedings of the Second Congress of Yugoslav Aero-Space Society*, Yugoslav Aero-Space Society, Zagreb/Belgrade, 1975, pp. 99-107, in Serbo-Croatian.

¹⁰Grujic, L. T., "Finite-Time Adaptive Control," Proceedings of 1976 JACC, Purdue University, Lafayette, Ind., 1976.

¹¹Grujic, L. T., "On Practical Stability," *International Journal of Control*, Vol. 17, April 1973, pp. 881-887.

¹²Grujic, L. T., "On Synthesis of Hydro-Pneumatic Adaptive Control Systems," *Proceedings of the Symposium on Hydraulic and Pneumatic Control Systems and Power Transducers*, Society of Mechanical and Electrical Engineers and Technicians of SR Serbia, Belgrade, 1974, pp. 57-71, in Serbo-Croatian.

¹³Grujic, L. T., "Non-Inertial Adaptive Control," Proceedings of

1976 JACC, Purdue University, Lafayette, Ind., 1976.

¹⁴Bellman, R., Glicksberg, I., and Gross, O., "On the 'Bang-Bang' Control Problem," *Quarterly Applied Mathematics*, Vol. 14, March 1956, pp. 11-18.

¹⁵Pontryagin, L. S., Bol'tanski, V. G., Gamkrelidze, R. S., and Mischenko, E. F., *The Mathematical Theory of Optimal Control*,

Pergamon Press, Oxford, 1964.

¹⁶Flügee-Lotz, I., *Discontinuous and Optimal Control*, McGraw Hill, New York, 1968.

¹⁷Tsypkin, Y. Z., *Relay Automatic Systems*, Nauka, Moscow, 1974, in Russian.

¹⁸Emelynov, S. V., Utkin, V. I., Taran, V. A., Kostyleva, N. E., Shubladeze, A. M., Ezerov, V. B., and Dubrovsky, E. N., *Theory of Variable Structure Systems*, Nauka, Moscow, 1970, in Russian.

¹⁹Petrov, B. N., Ruthkovsky, V. Y., and Krutova, I. N., "Basic Properties and Some Dynamic Problems of Adaptive Model Reference Systems," *Proceedings of the Second IFAC Symposium on the Theory of Self-Adaptive Control Systems*, Hammon, P. H., Ed., Plenum Press, New York, 1966, pp. 157-161.

²⁰Zemlyakov, S. D., "Some Problems of Analytical Synthesis in Model Reference Control Systems by the Direct Method of Lyapunov," *Proceedings of the Second IFAC Symposium on the Theory of Self-Adaptive Control Systems*, Hammon, P. H., Ed., Plenum Press, New York, 1966, pp. 153-156.

²¹Lowe, E. H. and Rowland, J. R., "Improved Signal Synthesis Techniques for Model Reference Adaptive Control Systems," *IEEE Transactions on Automatic Control*, Vol. AC-19, April 1974, pp. 119-121.

²²Devaud, F. M. and Caron, J. Y., "Asymptotic Stability of Model Reference Systems with Bang-Bang Control," *IEEE Transactions on Automatic Control*, Vol. AC-20, Oct. 1975, pp. 694-696.

²³Landau, I. D. and Courtiol, B., "Design of Multivariable Adaptive Model Following Control Systems," *Proceedings of the Third IFAC Symposium on Sensitivity, Adaptivity, and Optimality*, 1973, pp. 315-322; *Automatica*, Vol. 10, Sept. 1974, pp. 483-494.

²⁴Narendra, K. S. and Kudva, P., "Stable Adaptive Schemes for System Identification and Control," *IEEE Transactions on Systems, Man, and Cybernetics*, Vol. SMC-4, Nov. 1974, Part I: pp. 542-551, Part II: pp. 552-560.